# **Muon FFAG Design Updates**

J. Scott Berg Muon Collaboration Friday Meeting 1 July 2005



#### **Stages in FFAGs**



- Different numbers of stages to get from 2.5 to 20 GeV
- 2 stages significantly more expensive than 3
  - Result: significantly worse
  - More cells, larger apertures, fewer turns
  - But fields and magnet lengths lower
- 3 stages wins slightly over 4
  - Machine cost slightly lower for 4, but decays make 4 stages worse
  - Extra cost of transfer line also adds to 4 stage cost
  - Prefer fewer stages to more
- Cost per GeV at low energy stays pretty flat
  - ◆ For 2.5 GeV to something ring: 2.1 GeV cost me 30.1 PB/GeV
  - ◆ For something to 20 GeV ring: 2.9 GeV cost me 18.3 PB/GeV
  - Almost certainly better to give low energy a SMALLER range



## **Stages in FFAGs: Table**



| Min. total energy (GeV)  | 2.5   | 4.2  | 7.1  | 11.9 | 2.5  | 5.0   | 10.0  | 2.5   | 7.1   |
|--------------------------|-------|------|------|------|------|-------|-------|-------|-------|
| Max. total energy (GeV)  | 4.2   | 7.1  | 11.9 | 20.0 | 5.0  | 10.0  | 20.0  | 7.1   | 20.0  |
| Number of cells          | 34    | 38   | 46   | 57   | 50   | 63    | 82    | 101   | 152   |
| Number of cavities       | 26    | 30   | 35   | 38   | 42   | 48    | 56    | 88    | 97    |
| RF voltage (MV)          | 331   | 382  | 434  | 477  | 534  | 606   | 704   | 1114  | 1230  |
| Turns                    | 5.2   | 7.6  | 11.4 | 17.7 | 4.7  | 8.5   | 15.0  | 4.2   | 11.3  |
| Circumference (m)        | 144   | 174  | 228  | 306  | 204  | 279   | 400   | 389   | 653   |
| Decay (%)                | 3.6   | 3.8  | 4.4  | 5.4  | 4.2  | 5.1   | 6.5   | 5.8   | 9.1   |
| Machine cost (PB)        | 53.0  | 56.7 | 61.5 | 68.1 | 74.8 | 78.9  | 88.9  | 138.1 | 142.0 |
| per GeV (PB/GeV)         | 31.1  | 19.8 | 12.8 | 8.4  | 29.9 | 15.8  | 8.9   | 30.2  | 11.0  |
| Marginal decay cost (PB) | 18.0  | 18.9 | 21.9 | 27.1 | 21.1 | 25.6  | 32.3  | 28.9  | 45.5  |
| Total machine cost (PB)  | 239.3 |      |      |      |      | 242.7 | 280.1 |       |       |
| Total decay cost (PB)    | 85.9  |      |      | 78.9 |      |       | 74.5  |       |       |



#### Variable Frequency FFAGs



- Time of flight in FFAGs depends on energy
- If RF frequency doesn't change, this will cause you to get off the RF crest if you accelerate too slowly
- However, if the RF frequency is variable, you can stay on-crest, using as little voltage as you want
- With muons, we have decays: want a high average gradient
- Find cost-minimum lattices with decays where no attempt is made at controlling time of flight
- Compare to cost-minimum lattices with control on time of flight



### Variable Frequency FFAGs: Table



| Minimum total energy (GeV)     | 2.5  | 5    | 10   | 2.5  | 5    | 10   |
|--------------------------------|------|------|------|------|------|------|
| Maximum total energy (GeV)     |      | 10   | 20   | 5    | 10   | 20   |
| $V/(\omega \Delta T \Delta E)$ | 1/6  | 1/8  | 1/12 |      |      |      |
| No. of cells                   | 50   | 65   | 82   | 38   | 47   | 65   |
| No. of cavities                | 58   | 49   | 56   | 30   | 36   | 45   |
| RF voltage (MV)                | 534  | 620  | 704  | 380  | 464  | 566  |
| Turns                          | 4.7  | 8.2  | 15.0 | 6.6  | 10.8 | 17.7 |
| Circumference (m)              | 204  | 286  | 400  | 169  | 232  | 350  |
| Decay (%)                      | 4.2  | 5.1  | 6.5  | 4.8  | 5.4  | 6.6  |
| Magnet cost (PB)               | 39.4 | 37.2 | 39.1 | 40.0 | 40.6 | 42.7 |
| RF cost (PB)                   | 30.3 | 35.2 | 39.9 | 21.5 | 26.3 | 32.1 |
| Linear cost (PB)               | 5.1  | 7.2  | 10.0 | 4.2  | 5.8  | 8.8  |
| Machine cost (PB)              | 74.8 | 79.5 | 88.9 | 65.7 | 72.8 | 83.6 |
| Extra decay cost (PB)          |      |      |      | 3.1  | 1.5  | 1.0  |
| Cost reduction (%)             |      |      |      | 8.0  | 6.6  | 4.9  |
| $\Delta f/f \ (10^{-3})$       |      |      |      | 5.4  | 2.8  | 1.3  |
| Variation time ( $\mu$ s)      |      |      |      | 2    | 5    | 12   |



#### **Analysis**



- The cost reductions are relatively modest
  - Cell lengths go up, so RF efficiency goes down: more decays
  - Machine gets shorter, magnet costs go up (aperture increase)
  - Less RF required, this plus linear cost gives reduction
- For all three stages, cost increase is 20% of final RF cost
  - Making the RF frequency variable will cost something!
  - ◆ RF cost includes cavity itself plus power, cryostat, etc.
  - Thus, may be larger percentage of cavity cost.
  - Power, cryo costs may also increase!
- Probably not worth the trouble to make RF variable
  - Cost reduction is relatively modest
  - High technical risk
- Greater cost reduction at low energy
  - But frequency variation harder there